Cantilever Work Sheet

Abstract

$\underline{L O A D}$ 1. Describe the load: What is Product? Example: Plywood / Bundles of Pipe / Loose Aluminum Extrusion 2. Length \qquad Width \qquad Height \qquad 3. Weight per bundle: \qquad 4. How many arms will be required to support load without deflection? \qquad

ARMS

5. Inclined (20 degree incline) \qquad
6. Straight ($3 / 8 "$ per foot pitch to compensate for deflection) \qquad
7. Straight Arm w/lip \qquad
8. Pipe Sockets? \qquad
9. Length of Arm? \qquad
10. Capacity per Arm? \qquad (\# 3 divided by \# 4) \qquad

UPRIGHTS

11. Single Sided \qquad
12. Double Sided \qquad
13. Height \qquad (Determined by forklift ht / ceiling ht / etc) Base length is determined by arm length...included with upright.
14. Base + how many arm levels? \qquad
15. Brace Length: \qquad (Determined by length of material divided by the \# of uprights = brace length) $24,36,42,48,60,72,84,96$ Braces are on center of uprights.

Personally Design a Cantilever Rack System to meet your Load Requirements.

Storage Information per Application:

Load Deflection.
Determine number of Columns (Uprights).
Lood deflection is charseturizul as the sagigg of the lood between the arms. Space Blocks on the floor at an equal distanoe apurt under the load until you haveno sagying Each block represcots one arm. The arm will be connected to the upright to support the load.

Fre safe loads with two-arm support, the \#istance between the arms should be $1 / 2$ the lond and length.

Arm Selection.

1. Divide the tocal weight by the number of arms, as nequirod
2. Match the lond capocity required with the appropriate arm length and select proper arm from cahle. Arm length should equal loed depth.

For your convienence:
-Contact West Point Rack for curnent arm and
base dimensions.

- Check limitations at your plant, such as ceiling clearance and fork lift height.
- Top arm level must be below the top of Stanchion.

Arm Loading.

Intended Load.

1. Length:
2. Depth:
3. Height:
4. Weight:
5. Horiz. Arm Spacing:

Typical Cantilever Loading Frequency.

Customer must distribute the 'load' (weight) ewenly across (owar) the number of arms used to support it.
The onerhang should equal $1 / 2$ the colomn spacing,
This will assure even looding on all arms.

Upright Capacity.

Do notexoood upright capacities. Count the number of arms mbe used on upright, find arm capacity on "spece sheet" and multiply by number of arms por upright.

Determine Upright Height:

Start with busc height.

+ number of stowaye levels x 's had height,
+ handling clearamec (4° to 6°) x's number of levcls,
+ number of arm levels X's arm thickness
- Upright Height

All erpacities are based on uniformly distribubed loul.

End Lood - Half Cepacity reducts total arm copocily by 50%.

